Complex Numbers III Cheat Sheet

Loci
A locus is defined as the set of all points that satisfy a given constraint. We can use loci to represent regions on an Argand diagram that correspond to given constraints such as inequalities. In this cheat sheet we examine loci located in the complex plane through circles, perpendicular bisectors, and half-lines.

Distance Between Point

Modifying the definition for the modulus introduced in "Complex Numbers 1 " allows us to find the distance Modifying the defintion for the modulus introduced in Complex Numbers allows us to find the istance
between any two points in the complex plane. The distance between two general points, $w=x_{1}+i y_{1}$ and
$z=x_{2}+i y_{2}$, on an Argand diagram is given by the equation:

$$
|z-w|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Circles
The locus of all complex numbers located a given distance r from a point a on an Argand diagram is given by $|z-a|=r$

The above equation represents a circle on an Argand diagram. This becomes apparent when we substitute in the Cartesian form $z=x+i y$ and let a be a general point $\left(x_{1}, y_{1}\right)$:

$$
\begin{aligned}
& \left|x+i y-\left(x_{1}+i y_{1}\right)\right|=r \\
\Rightarrow & \sqrt{\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}}=r \\
\Rightarrow & \left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2},
\end{aligned}
$$

which is the standard Cartesian equation of a circle.
Example 1: Draw the locus of $|z-1-i|=4$ on an Argand diagram.
First, we rewrite $|z-1-i|$ so that we
can determine the centre of the circl an Argand diagram.

Draw a circle centred at $(1,1)$ with radius
4 on an Argand diagram.
 Centre $=(1,1)$
Radius $=4$

Perpendicular Bisectors

The locus of complex numbers that satisfy equations of the form:

$$
\left|z-z_{1}\right|=\left|z-z_{2}\right|,
$$

where z_{1} and z_{2} are two points in the complex plane, lie on the perpendicular bisector between the two points.

Example 2: Sketch the locus of points that satisfy $|z-i|=|z+1|$
The perpendicular bisector is the line
directly between (0,1) and ($-1,0$). In
words, the equation represents "all the
complex numbers z that are the same
distance away from (0,1) as they are from
$(-1,0)^{\prime \prime}$.

Half-Lines

Loci can also be constructed usins arsuments. For esal and go on infinitely in only one direction) are represented by:

$$
\arg \left(z-z_{1}\right)=\theta
$$

where z_{1} is the starting point of the half-line and θ is the angle (in radians) made with the positive real axis.
Example 3: Sketch the locus of points that satisfy $\arg (z-1-i)=\frac{\pi}{4}$

Sketching Regions

When representing inequalities using loci, we mus

- Use a dashed ine for the less than < and greater than > symbols; all the points on the line are
- Use a solid line for the less than or equal to \leq and greater than or equal to \geq symbols; all the points on the line are included
Example 4: On an Argand diagram, represent the inequality $|z|<3$
Notice that the less than symbol is used,
so we must use a dashed line.
In words, the inequality repres
the complex numbers z that are less than
3 units away from the origin". Hence, we
must shade inside the circle.

Intersecting Regions
Example 5: On an Argand diagram, shade the region which satisfies:

$$
\{z \in \mathbb{C}:|z|<2\} \cap\left\{z \in \mathbb{C}: 0 \leq \arg (z-1-i)<\frac{\pi}{2}\right\}
$$

AQA A Level Further Maths: Core

Example 6: On an Argand diagram, shade the region which satisfies:
$\{z \in \mathbb{C}:|z-1| \leq|z-3 i|\} \cap\{z \in \mathbb{C}:|z| \leq 2\}$
We draw the same circle as in example 5 ,
however, we use a solid line since the \leq symbol is used. In words, the inequality $|z-1| \leq \mid z$
3i| represents "all complex numbers z where the distance from z to 1 is less than the distance from z to $3 i^{\prime \prime}$. A solid line is used for the perpendicular bisector because of the \leq symbol. To satisfy both loci duue to the presence of the under the perpendicular bisector.

Further Loci Problems

Example 7: Given that $|z|=4$ and $|z+i|=|z-1|$, find the complex number

Substitute $z=x+$ iy into $\|z\|=4$.	$\|x+i y\|=4 \Rightarrow x^{2}+y^{2}=16$
Substitute $z=x+i y$ into $\|z+i\|=\|z-1\|$.	$\begin{gathered} \|x+i y+i\|=\|x+i y-1\| \\ \left.\Rightarrow x^{2}+y+1\right)^{2}=(x-1)^{2}+y^{2} \\ \Rightarrow x^{2}+y^{2}+2 y+1=x^{2}-2 x+1+y^{2} \\ \Rightarrow 2 y=-2 x \Rightarrow y=-x \end{gathered}$
Substitute $y=-x$ into $x^{2}+y^{2}=16$.	$\begin{gathered} x^{2}+x^{2}=16 \Rightarrow 2 x^{2}=16 \Rightarrow x^{2}=8 \\ \Rightarrow x= \pm 2 \sqrt{2} \Rightarrow y=\mp 2 \sqrt{2} \\ z=2 \sqrt{2}-2 i \sqrt{2}, \quad z=-2 \sqrt{2}+2 i \sqrt{2} \end{gathered}$

Example 8: Find the maximum value of $\arg (z)$ given that $|z-(3+3 i)|=2$

A similar method to the one above can be used to find the minimum argument of a circle.www.pmt.education

